Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 264(Pt 2): 130773, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467211

RESUMO

This work reports on the development of starch-rich thermoplastic based formulations produced by using mango kernel flour, avoiding the extraction process of starch from mango kernel to produce these materials. Glycerol, sorbitol and urea at 15 wt% are used as plasticizers to obtain thermoplastic starch (TPS) formulations by extrusion and injection-moulding processes. Mechanical results show that sorbitol and urea allowed to obtain samples with tensile strength and elongation at break higher than the glycerol-plasticized sample, achieving values of 2.9 MPa of tensile strength and 42 % of elongation at break at 53 % RH. These results are supported by field emission scanning electron microscopy (FESEM) micrographs, where a limited concentration of voids was observed in the samples with sorbitol and urea, indicating a better interaction between starch and the plasticizers. Thermogravimetric analysis (TGA) shows that urea and sorbitol increase the thermal stability of TPS in comparison to the glycerol-plasticized sample. Differential scanning calorimetry (DSC) and dynamic-mechanical-thermal analysis (DMTA) verify the increase in stiffness of the sorbitol and urea plasticized TPS and also illustrate an increase in the glass transition temperature of both samples in comparison to the glycerol-plasticized sample. Glass transition temperatures of 45 °C were achieved for the sample with sorbitol.


Assuntos
Mangifera , Plastificantes , Plastificantes/química , Amido/química , Glicerol/química , Farinha , Plásticos , Sorbitol/química , Ureia/química
2.
Polymers (Basel) ; 15(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37376389

RESUMO

In this study, a new composite material is developed using a semi bio-based polypropylene (bioPP) and micronized argan shell (MAS) byproducts. To improve the interaction between the filler and the polymer matrix, a compatibilizer, PP-g-MA, is used. The samples are prepared using a co-rotating twin extruder followed by an injection molding process. The addition of the MAS filler improves the mechanical properties of the bioPP, as evidenced by an increase in tensile strength from 18.2 MPa to 20.8 MPa. The reinforcement is also observed in the thermomechanical properties, with an increased storage modulus. The thermal characterization and X-ray diffraction indicate that the addition of the filler leads to the formation of α structure crystals in the polymer matrix. However, the addition of a lignocellulosic filler also leads to an increased affinity for water. As a result, the water uptake of the composites increases, although it remains relatively low even after 14 weeks. The water contact angle is also reduced. The color of the composites changes to a color similar to wood. Overall, this study demonstrates the potential of using MAS byproducts to improve their mechanical properties. However, the increased affinity with water should be taken into account in potential applications.

3.
Polymers (Basel) ; 14(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35567043

RESUMO

In this work, we report the development and characterization of polylactide (PLA) blends with improved toughness by the addition of 10 wt.% lactic acid oligomers (OLA) and assess the feasibility of reactive extrusion (REX) and injection moulding to obtain high impact resistant injection moulded parts. To improve PLA/OLA interactions, two approaches are carried out. On the one hand, reactive extrusion of PLA/OLA with different dicumyl peroxide (DCP) concentrations is evaluated and, on the other hand, the effect of maleinized linseed oil (MLO) is studied. The effect of DCP and MLO content used in the reactive extrusion process is evaluated in terms of mechanical, thermal, dynamic mechanical, wetting and colour properties, as well as the morphology of the obtained materials. The impact strength of neat PLA (39.3 kJ/m2) was slightly improved up to 42.4 kJ/m2 with 10 wt.% OLA. Nevertheless, reactive extrusion with 0.3 phr DCP (parts by weight of DCP per 100 parts by weight of PLA-OLA base blend 90:10) led to a noticeable higher impact strength of 51.7 kJ/m2, while the reactive extrusion with 6 phr MLO gave an even higher impact strength of 59.5 kJ/m2, thus giving evidence of the feasibility of these two approaches to overcome the intrinsic brittleness of PLA. Therefore, despite MLO being able to provide the highest impact strength, reactive extrusion with DCP led to high transparency, which could be an interesting feature in food packaging, for example. In any case, these two approaches represent environmentally friendly strategies to improve PLA toughness.

4.
Foods ; 11(8)2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-35454748

RESUMO

The present work puts the Circular Bioeconomy's concept into action, originally valorizing residues of spent coffee grains from the beverage liquor coffee industry to develop green composite pieces of polylactide (PLA). The as-received spent coffee grains were first milled to obtain the so-called spent coffee grounds (SCGs) that were, thereafter, incorporated at 20 wt.% into PLA by extrusion. Finally, the resultant green composite pellets were shaped into pieces by injection molding. Moreover, two oligomers of lactic acid (OLAs), namely OLA2 and OLA2mal, the latter being functionalized with maleic anhydride (MAH), were added with SCGs during the extrusion process at 10 wt.%. The results show that, opposite to most claims published in the literature of green composites of PLA, the incorporation of the liquor waste derived SCGs increased the ductility of the pieces by approximately 280% mainly due to their high lipid content. Moreover, the simultaneous addition of OLA2 and OLA2mal further contributed to improve the tensile strength of the green composite pieces by nearly 36% and 60%, respectively. The higher performance of OLA2mal was ascribed to the chemical interaction achieved between the biopolyester and the lignocellulosic fillers by the MAH groups. The resultant green composite pieces are very promising as disposable food-serving utensils and tableware.

5.
Molecules ; 26(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34641470

RESUMO

Framing the Circular Bioeconomy, the use of reactive compatibilizers was applied in order to increase the interfacial adhesion and, hence, the physical properties and applications of green composites based on biopolymers and food waste derived lignocellulosic fillers. In this study, poly(butylene succinate) grafted with maleic anhydride (PBS-g-MAH) was successfully synthetized by a reactive melt-mixing process using poly(butylene succinate) (PBS) and maleic anhydride (MAH) that was induced with dicumyl peroxide (DCP) as a radical initiator and based on the formation of macroradicals derived from the hydrogen abstraction of the biopolymer backbone. Then, PBS-g-MAH was used as reactive compatibilizer for PBS filled with different contents of pistachio shell flour (PSF) during melt extrusion. As confirmed by Fourier transform infrared (FTIR), PBS-g-MAH acted as a bridge between the two composite phases since it was readily soluble in PBS and could successfully form new esters by reaction of its multiple MAH groups with the hydroxyl (-OH) groups present in cellulose or lignin of PSF and the end ones in PBS. The resultant compatibilized green composites were, thereafter, shaped by injection molding into 4-mm thick pieces with a wood-like color. Results showed significant increases in the mechanical and thermomechanical rigidity and hardness, meanwhile variations on the thermal stability were negligible. The enhancement observed was related to the good dispersion and the improved filler-matrix interfacial interactions achieved by PBS-g-MAH and also to the PSF nucleating effect that increased the PBS's crystallinity. Furthermore, water uptake of the pieces progressively increased as a function of the filler content, whereas the disintegration in controlled compost soil was limited due to their large thickness.


Assuntos
Materiais Biocompatíveis/química , Butileno Glicóis/química , Farinha/análise , Anidridos Maleicos/química , Peróxidos/química , Pistacia/química , Polímeros/química , Temperatura , Resistência à Tração
6.
Polymers (Basel) ; 13(11)2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34067283

RESUMO

Environmentally friendly wood plastic composites (WPC) with biobased high density polyethylene (BioHDPE) as the polymer matrix and hemp, flax and jute short fibers as natural reinforcements, were melt-compounded using twin-screw extrusion and shaped into pieces by injection molding. Polyethylene-graft-maleic anhydride (PE-g-MA) was added at two parts per hundred resin to the WPC during the extrusion process in order to reduce the lack in compatibility between the lignocellulosic fibers and the non-polar polymer matrix. The results revealed a remarkable improvement of the mechanical properties with the combination of natural fibers, along with PE-g-MA, highly improved stiffness and mechanical properties of neat BioHDPE. Particularly, hemp fiber drastically increased the Young's modulus and impact strength of BioHDPE. Thermal analysis revealed a slight improvement in thermal stability with the addition of the three lignocellulosic fibers, increasing both melting and degradation temperatures. The incorporation of the fibers also increased water absorption due to their lignocellulosic nature, which drastically improved the polarity of the composite. Finally, fire behavior properties were also improved in terms of flame duration, thanks to the ability of the fibers to form char protective barriers that isolate the material from oxygen and volatiles.

7.
Polymers (Basel) ; 13(6)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802815

RESUMO

The present study reports on the development of wood plastic composites (WPC) based on micronized argan shell (MAS) as a filler and high-density polyethylene obtained from sugarcane (Bio-HDPE), following the principles proposed by the circular economy in which the aim is to achieve zero waste by the introduction of residues of argan as a filler. The blends were prepared by extrusion and injection molding processes. In order to improve compatibility between the argan particles and the green polyolefin, different compatibilizers and additional filler were used, namely polyethylene grafted maleic anhydride (PE-g-MA 3 wt.-%), maleinized linseed oil (MLO 7.5 phr), halloysite nanotubes (HNTs 7.5 phr), and a combination of MLO and HNTs (3.75 phr each). The mechanical, morphological, thermal, thermomechanical, colorimetric, and wettability properties of each blend were analyzed. The results show that MAS acts as a reinforcing filler, increasing the stiffness of the Bio-HDPE, and that HNTs further increases this reinforcing effect. MLO and PE-g-MA, altogether with HNTs, improve the compatibility between MAS and Bio-HDPE, particularly due to bonds formed between oxygen-based groups present in each compound. Thermal stability was also improved provided by the addition of MAS and HNTs. All in all, reddish-like brown wood plastic composites with improved stiffness, good thermal stability, enhanced compatibility, and good wettability properties were obtained.

8.
Polymers (Basel) ; 13(9)2021 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-33922939

RESUMO

In this study, hemp seed oil was reacted with maleic anhydride in an ene reaction to obtain maleinized hemp seed oil (MHO). The use of MHO as a plasticizer and compatibilizer has been studied for polylactic acid (PLA) and thermoplastic starch (TPS) blends (80/20, respectively). By mechanical, thermal and morphological characterizations, the addition of MHO provides a dual effect, acting as plasticizer and compatibilizer between these two partially miscible biopolymers. The addition of MHO up to 7.5 phr (parts by weight of MHO per hundred parts of PLA and TPS) revealed a noticeable increase in the ductile properties, reaching an elongation at break 155% higher than the PLA/TPS blend. Furthermore, contrary to what has been observed with maleinized oils such as linseed oil, the thermal properties do not decrease significantly as a result of the plasticizing effect, due to the compatibilizing behavior of the MHO and the natural antioxidants present in the oil. Finally, a disintegration test was carried out in aerobic conditions at 58 °C, for 24 days, to demonstrate that the incorporation of the MHO, although causing a slight delay, does not impair the biodegradability of the blend, obtaining total degradation in 24 days.

9.
Polymers (Basel) ; 13(4)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672322

RESUMO

This study focuses on the potential uses in textiles of fibers of soy protein (SP) and chitin, which are naturally occurring polymers that can be obtained from agricultural and food processing by-products and wastes. The as-received natural fibers were first subjected to a three-step manufacturing process to develop yarns that were, thereafter, converted into fabrics by weft knitting. Different characterizations in terms of physical properties and comfort parameters were carried out on the natural fibers and compared to waste derived fibers of coir and also conventional cotton and cotton-based fibers, which are widely used in the textile industry. The evaluation of the geometry and mechanical properties revealed that both SP and chitin fibers showed similar fineness and tenacity values than cotton, whereas coir did not achieve the expected properties to develop fabrics. In relation to the moisture content, it was found that the SP fibers outperformed the other natural fibers, which could successfully avoid variations in the mechanical performance of their fabrics as well as impair the growth of microorganisms. In addition, the antimicrobial activity of the natural fibers was assessed against different bacteria and fungi that are typically found on the skin. The obtained results indicated that the fibers of chitin and also SP, being the latter functionalized with biocides during the fiber-formation process, showed a high antimicrobial activity. In particular, reductions of up to 100% and 60% were attained for the bacteria and fungi strains, respectively. Finally, textile comfort was evaluated on the weft-knitted fabrics of the chitin and SP fibers by means of thermal and tactile tests. The comfort analysis indicated that the thermal resistance of both fabrics was similar to that of cotton, whereas their air permeability was higher, particularly for chitin due to its higher fineness, which makes these natural fibers very promising for summer clothes. Both the SP and chitin fabrics also presented relatively similar values of fullness and softness than the pure cotton fabric in terms of body feeling and richness. However, the cotton/polyester fabric was the only one that achieved a good range for uses in winter-autumn cloths. Therefore, the results of this work demonstrate that non-conventional chitin and SP fibers can be considered as potential candidates to replace cotton fibers in fabrics for the textile industry due to their high comfort and improved sustainability. Furthermore, these natural fibers can also serve to develop novel functional textiles with antimicrobial properties.

10.
Molecules ; 26(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466389

RESUMO

This research work reports the potential of maleinized linseed oil (MLO) as biobased compatibilizer in polylactide (PLA) and a thermoplastic elastomer, namely, polystyrene-b-(ethylene-ran-butylene)-b-styrene (SEBS) blends (PLA/SEBS), with improved impact strength for the packaging industry. The effects of MLO are compared with a conventional polystyrene-b-poly(ethylene-ran-butylene)-b-polystyrene-graft-maleic anhydride terpolymer (SEBS-g-MA) since it is widely used in these blends. Uncompatibilized and compatibilized PLA/SEBS blends can be manufactured by extrusion and then shaped into standard samples for further characterization by mechanical, thermal, morphological, dynamical-mechanical, wetting and colour standard tests. The obtained results indicate that the uncompatibilized PLA/SEBS blend containing 20 wt.% SEBS gives improved toughness (4.8 kJ/m2) compared to neat PLA (1.3 kJ/m2). Nevertheless, the same blend compatibilized with MLO leads to an increase in impact strength up to 6.1 kJ/m2, thus giving evidence of the potential of MLO to compete with other petroleum-derived compatibilizers to obtain tough PLA formulations. MLO also provides increased ductile properties, since neat PLA is a brittle polymer with an elongation at break of 7.4%, while its blend with 20 wt.% SEBS and MLO as compatibilizer offers an elongation at break of 50.2%, much higher than that provided by typical SEBS-g-MA compatibilizer (10.1%). MLO provides a slight decrease (about 3 °C lower) in the glass transition temperature (Tg) of the PLA-rich phase, thus showing some plasticization effects. Although MLO addition leads to some yellowing due to its intrinsic yellow colour, this can contribute to serving as a UV light barrier with interesting applications in the packaging industry. Therefore, MLO represents a cost-effective and sustainable solution to the use of conventional petroleum-derived compatibilizers.


Assuntos
Materiais Biocompatíveis/química , Elastômeros/química , Óleo de Semente do Linho/química , Anidridos Maleicos/química , Poliésteres/química , Polímeros/química , Embalagem de Produtos/métodos , Temperatura , Resistência à Tração
11.
Antioxidants (Basel) ; 10(1)2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33375591

RESUMO

This study originally explores the use of naringin (NAR), gallic acid (GA), caffeic acid (CA), and quercetin (QUER) as natural antioxidants for bio-based high-density polyethylene (bio-HDPE). These phenolic compounds are present in various citrus fruits and grapes and can remain in their leaves, peels, pulp, and seeds as by-products or wastes after juice processing. Each natural additive was first melt-mixed at 0.8 parts per hundred resin (phr) of bio-HDPE by extrusion and the resultant pellets were shaped into films by thermo-compression. Although all the phenolic compounds colored the bio-HDPE films, their contact transparency was still preserved. The chemical analyses confirmed the successful inclusion of the phenolic compounds in bio-HDPE, though their interaction with the green polyolefin matrix was low. The mechanical performance of the bio-HDPE films was nearly unaffected by the natural compounds, presenting in all cases a ductile behavior. Interestingly, the phenolic compounds successfully increased the thermo-oxidative stability of bio-HDPE, yielding GA and QUER the highest performance. In particular, using these phenolic compounds, the onset oxidation temperature (OOT) value was improved by 43 and 41.5 °C, respectively. Similarly, the oxidation induction time (OIT) value, determined in isothermal conditions at 210 °C, increased from 4.5 min to approximately 109 and 138 min. Furthermore, the onset degradation temperature in air of bio-HDPE, measured for the 5% of mass loss (T5%), was improved by up to 21 °C after the addition of NAR. Moreover, the GA- and CA-containing bio-HDPE films showed a high antioxidant activity in alcoholic solution due to their favored release capacity, which opens up novel opportunities in active food packaging. The improved antioxidant performance of these phenolic compounds was ascribed to the multiple presence of hydroxyl groups and aromatic heterocyclic rings that provide these molecules with the features to permit the delocalization and the scavenging of free radicals. Therefore, the here-tested phenolic compounds, in particular QUER, can represent a sustainable and cost-effective alternative of synthetic antioxidants in polymer and biopolymer formulations, for which safety and environmental issues have been raised over time.

12.
Polymers (Basel) ; 12(12)2020 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-33352673

RESUMO

The main objective of the work reported here was the analysis and evaluation of halloysite nanotubes (HNTs) as natural flame retardancy filler in partially biobased polyamide 610 (PA610), with 63% of carbon from natural sources. HNTs are naturally occurring clays with a nanotube-like shape. PA610 compounds containing 10%, 20%, and 30% HNT were obtained in a twin-screw co-rotating extruder. The resulting blends were injection molded to create standard samples for fire testing. The incorporation of the HNTs in the PA610 matrix leads to a reduction both in the optical density and a significant reduction in the number of toxic gases emitted during combustion. This improvement in fire properties is relevant in applications where fire safety is required. With regard to calorimetric cone results, the incorporation of 30% HNTs achieved a significant reduction in terms of the peak values obtained of the heat released rate (HRR), changing from 743 kW/m2 to about 580 kW/m2 and directly modifying the shape of the characteristic curve. This improvement in the heat released has produced a delay in the mass transfer of the volatile decomposition products, which are entrapped inside the HNTs' lumen, making it difficult for the sample to burn. However, in relation to the ignition time of the samples (TTI), the incorporation of HNTs reduces the ignition start time about 20 s. The results indicate that it is possible to obtain polymer formulations with a high renewable content such as PA610, and a natural occurring inorganic filler in the form of a nanotube, i.e., HNTs, with good flame retardancy properties in terms of toxicity, optical density and UL94 test.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...